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Machine learning methods 
to predict amyloid positivity using 
domain scores from cognitive tests
Guogen Shan1*, Charles Bernick2, Jessica Z. K. Caldwell2 & Aaron Ritter2

Amyloid-β (Aβ ) is the target in many clinical trials for Alzheimer’s disease (AD). Preclinical AD patients 
are heterogeneous with regards to different backgrounds and diagnosis. Accurately predicting 
A β status of participants by using machine learning (ML) models based on easily accessible data, 
could improve the effectiveness of AD clinical trials. We will develop optimal ML models for each 
subpopulation stratified by sex and disease stages using sub scores from screening neurological 
tests. Data from the AD Neuroimaging Initiative (ADNI) were used to build the ML models, for three 
groups: individuals with significant memory concern, early mild cognitive impairment (MCI), and 
late MCI. Data were further separated into 6 groups by disease stage (3 levels) and sex (2 categories). 
The outcome was defined as the A β status confirmed by the PET imaging, and the features include 
demographic data, newly identified risk factors, screening tests, and the domain scores from 
screening tests. Monte Carlo simulation studies were used together with k-fold cross-validation 
technique to compute model performance metric. We also develop a new feature selection method 
based on the stochastic ordering to avoiding searching all possible combinations of features. Accuracy 
of the identified optimal model for SMC male was over 90% by using domain scores, and accuracy for 
LMCI female was above 86%. Domain scores can improve the ML model prediction as compared to the 
total scores. Accurate ML prediction models can identify the proper population for AD clinical trials.

The global impact of Alzheimer’s disease (AD) is  immense1. With worldwide rates expected to triple in the next 
decade, the development of successful strategies to combat AD has become a global health  imperative2. One such 
strategy is the identification of individuals with AD prior to the onset of  dementia3. Alzheimer’s disease is now 
conceptualized as a continuous disease with a long asymptomatic phase in which neuropathological substrate 
accumulates eventually leading to stages of mild cognitive impairment (MCI) and finally to overt functional 
decline and dementia. Early diagnosis of AD has been associated with a variety of benefits including increased 
survival  time4, improved psychological well-being for patients and their  families5, and lower health care  costs6,7. 
Perhaps most compelling is emerging data from clinical trials of disease modifying therapies (DMT) clearly 
demonstrating that meaningful therapeutic success will likely require from early  intervention8.

Amyloid-β (Aβ ) is one of the two hallmark pathologies for diagnosis of  AD9. AD is characterized by a long 
preclinical stage which is referred to be as mild cognitive impairment (MCI). A β has been the target of disease 
modified therapies (DMTs) in many AD clinical trials. One of the most recent drugs is aducanumab which is 
believed to be able to reduce deposits of A β . The results from its Phase 3 study indicated a statistically significant 
reduction after 78 weeks in the primary outcome: Clinical Dementia Rating-Sum of Boxes (CDR-SB) score, 
in the high-dose aducanumab group as compared to the placebo group. This A β targeted DMT could be the 
first new AD treatment in nearly two decades. A β status can be confirmed by using either cerebrospinal fluid 
(CSF) or positron emission tomography (PET) imaging. CSF is invasive and potentially painful for patients, and 
sometimes a participant can’t have a lumbar puncture because of a back deformity, infection, or possible brain 
herniation. Amyloid PET imaging is preferable in certain scenarios, but its utilization in clinical and trial settings 
is limited due to patients’ concerns (e.g., radiation), and high costs which are often not covered by insurances. 
Thus, developing tools to accurately predict the A β status offers an attractive  approach10,11.

One potential solution for overcoming this problem is to utilize affordable global screening tools that can be 
rapidly and inexpensively administered to diverse populations. The Montreal Cognitive Assessment (MoCA) 
is one such  candidate12. Now in widespread use, the MoCA is a brief screening tool that takes approximately 10 
min to administer and score. It includes 12 individual tasks grouped into seven cognitive domains (visuospatial/
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executive; naming; memory; attention; language; abstraction; and orientation). Scores on each task are summed 
to yield a total score, with maximum total of 30. Using a cutoff of 26, quantitative analysis of the MoCA shows that 
it has good sensitivity and specificity for individuals with dementia but variable specificity in MCI stages (76% 
with a range of 19–98%)13. Because the narrow range of scores within each cognitive domain limit traditional 
statistically inquiry, less research has been conducted to indicate whether qualitative analysis (domain-level 
performance) improves its diagnostic  accuracy14,15.

MCI and AD patients are characterized by heterogeneity in sex and APOE ε4  status16. Women with AD 
decline more rapidly in cognition than men with AD from longitudinal studies including the  ADNI17–21. In a 
study to investigate the longitudinal change in ADAS-Cog in MCI patients using the ADNI data, cognitive decline 
is greater in females than males, and APOE ε4 carriers have a significant effect on both slope and curvature of 
ADAS-cog change as compared to non-carriers22. Women have better verbal memory than men on average, 
across the lifespan. In the context of AD, this memory advantage appears to persist in women with normal cogni-
tion, despite presence of measurable pathological changes, including presence of brain beta-amyloid10,15,19,23–25. 
This advantage has also been suggested to result in memory measures being less effective in screening women 
versus men for early AD-related  changes26,27.

Machine learning (ML) methods hold promise for improving diagnostic classification above current processes 
and have been successfully applied to studies of individuals with early AD. However, current approaches utilized 
only a very few ML methods based on commonly used measures, and the k-fold cross-validation resampling 
procedure was traditionally used to evaluate model  performance11,28–30, but the results are not reliable with only 
one simulation. We will use Monte Carlo simulations along with the k-fold cross-validation technique to provide 
reliable comparisons between the considered ML  models31–33. The primary purpose of the current paper is to 
explore whether incorporating domain level scoring on the MoCA, in combination with several other widely 
available screening tests such as the Alzheimer’s Disease Cognitive Assessment (ADAS-Cog) and the Mini-Mental 
Status Examination (MMSE) into a novel machine learning (ML) algorithm improves diagnostic classification 
of AD in early stage individuals. It was hypothesized that incorporation of domain level scoring of these screen-
ing tests would improve performance above using the total scores in the ML models for each subpopulation.

Methods
Study designs and participants. Data used in this project were obtained from the ADNI database in 
June 2020 (http://adni.loni.usc.edu/)34,35. The ADNI is an ongoing longitudinal cohort of early stage AD research 
participants that has enrolled more than 1800 participants since 2004. Although a continuous study, there have 
been several phases of ADNI: ADNI-1, ADNI-Go, ADNI-2, and ADNI-3 (current). For our analysis, we wanted 
to select research participants at the earliest stages of symptomatic disease. This required us to select participants 
from different ADNI studies. Individuals with significant memory concern (SMC) were selected from ADNI-2, 
and ADNI-3 because the SMC cohort was added in the ADNI starting from ADNI-2 to address the gap between 
healthy controls and MCI. Individuals with early MCI (EMCI) or late MCI (LMCI) were selected from ADNI-
GO, ADNI-2, and ADNI-3. Because ADNI-1 used Pittsburgh Compound-B (PIB) to determine amyloid positiv-
ity, we did not use data from ADNI-1, but LMCI participants initially enrolled in ADNI-1 were included if they 
had follow up visits in the following three phases. In the ADNI study an individual’s diagnosis is rendered based 
on current clinical criteria used in conjunction with performance on psychometric testing. SMC is defined by 
having a significant memory concern but no impairment on the Logical Memroy II subscale (Delayed Paragraph 
Recall, Paragraph A only) from the Wechsler Memory Scale-Revised, while EMCI and LMCI are the two com-
plementary groups of mild cognitive impairment (MCI), and are distinguished by performance on the Logical 
Memroy II  subscale36.

Amyloid positivity was determined quantitatively. We computed the standardized uptake value ratio (SUVR): 
the average of weighted cortical retention means divided by the whole cerebellum SUVR, where frontal, cingulate, 
parietal, and temporal regions were used in the calculation of cortical retention means with a threshold of 1.11 
used to define the binary amyloid  status35,37,38.

In ADNI, participants are assessed at regular visits. These assessments are used to render a diagnosis. As a 
result, an individual’s diagnosis may change during the course of the study. For our study we analyzed data col-
lected from the baseline visit as this is the visit when amyloid positron emission tomography (PET) occurs. The 
sample size and characteristics of individuals used in our analysis are presented in Table 2. To account for the 
important moderating factors of sex we further stratified each subgroup by sex.

The three diagnosis groups (SMC, EMCI, and LMCI) were defined by their baseline diagnostic results. Patici-
pants’ amyloid status were obtained from the baseline visit, or the nearest visit having the amyloid status outcome 
and having the same diagnosis as baseline when the amyloid status was not available at baseline. We used that 
visit date to merge with other data files (e.g., cognitive measures). Sex is an important moderation factor in AD 
 research19,20. For each diagnosis group, we stratified data into two subgroups by sex: Female or Male. The sample 
sizes for each subgroup were presented in Table 2.

Model creation. Demographics. To build our model we attempted to incorporate known risk factors for 
amyloid positivity. Five demographic data were obtained from the ADNI: age, race (White, African American, 
or others), years of eduction, Hispanic ethnicity, and marital status (married, never married, divorced, or wid-
owed). Due to small percentages of participants other than White or African American, we combined them as 
one group. APOE ε4 was one of the three strong risk factors for amyloid status prediction in addition to age and 
ADAS-cog39. Family history of  dementia40, history of  hypertension41, and the Geriatric Depression Scale (GDS-
15) scores were included in the ML models.

http://adni.loni.usc.edu/
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Sex. Women and men differ significantly in terms of neuropsychological test performance, disease trajectory, 
and interaction with APOE ε4 status. Women’s advantage in verbal memory has been suggested to result in 
memory measures being less effective in screening women for early AD changes. Similarly, given that women’s 
strong memory might have a masking effect early in the disease process, predicting presence of brain amyloid 
with memory test scores is expected to be less effective for women, particularly for women with no detectable 
memory deficits. Based on the finding of the heterogeneity in sex and APOE ε4 status in MCI and AD, it is criti-
cal to build separate statistical prediction models for each subpopulation stratified by sex and APOE ε4 status. 
Based on these differences we built separate models for men and women at each disease stage.

Cognitive tests. The neuropsychological scores from the following four tests were included as features in the 
machine learning models: (1) Clinical Dementia Rating-Sum of Boxes (CDR-SB), (2) Mini Mental State Exam 
(MMSE), (3) Montreal Cognitive Assessment (MoCA), and (4) the 13-item ADAS-cog. For the MoCA score and 
the ADAS-cog score, we also included their domain level scores. Standard administration of the MoCA consists 
of 12 individual tasks grouped into seven cognitive domains: (M1) visuospatial/executive, (M2) naming, (M3) 
attention, (M4) language, (M5) abstraction, (M6) memory, and (M7) orientation. The ADAS-cog-13 include 13 
domain areas: (A1) Word Recall, (A2) Commands, (A3) Constructional Praxis, (A4) Delayed recall, (A5) Nam-
ing, (A6) Ideational Praxis, (A7) Orientation, (A8) Word Recognition, (A9) Recall instructions, (A10) Spoken 
language, (A11) Word finding, (A12) Comprehension, and (A13) Number  cancellation42.

The narrow range of scores within each domain (range from 0 to 12), makes application of traditional statisti-
cal methods to domain-specific performance difficult. As a result, the predominance of MoCA-related research 
has focused on total scores and likely underestimates the full utility it may provide as a screening tool. Domain 
level scores provide in essence, a “mini-cognitive profile” that may provide a more granular view of an individual’s 
cognition.

Machine learning models. We built ML models with by using both Monte-Carlo simulations and ten-fold 
cross-validation procedure. In each simulation, the complete data were split into a training data set (80%) and a 
testing data set (20%), where the training data set will be used in ten-fold cross-validation to build the prediction 
model, and the testing data set will be used for validation and calculating model performance metrics.

ML models can be used to improve amyloid positivity prediction by using the easily accessible data. We 
applied widely used ML methods to build an optimal model with the highest average accuracy from 1000 simu-
lations. Due to variation in splitting data into a training data set and a testing data set, a few simulations are not 
sufficient enough to provide reliable results. Thus, we run the simulation for 1000 times to identify the optimal 
ML model with reliable conclusions.

ML methods. We built ML predictive models with the statistical package caret in  R43,44, using the following 
supervised ML methods: linear discriminant analysis (LDA), k-nearest neighbor (kNN), Decision trees (DT), 
support vector machines (SVM) and random forests (RF). The LDA classifier finds a linear combination of 
features that characterizes or separates two or more classes. SVM finds a decision function that maximizes the 
margin around the separating hyperplane by modeling a mapping from features to labels as a combination of 
kernels. In Table 1, we list the 15 ML models along with the method values used in the R function.

Performance metrics. The optimal ML model is identified as the one having the highest average accuracy. Accu-
racy is commonly used to assess the performance of a ML model: the proportion of all classes that are correctly 
 predicted10,45 which is defined as:

where TP, FN, TN, and FP are the numbers of true positive, false negative, true negative, and false positive, 
respectively. It is easy to show that the total sample size is N = TP+TN+FP+FN, and N+ = TP+FN and N− = 
TN+FP are the number of participants with positive and negative amyloid, respectively.

The Matthews Correlation Coefficient (MCC) can be considered as an alternative of accuracy to assess the 
model performance. The MCC is equivalent to the Pearson correlation coefficient between actual and predicted 
amyloid status, with the range from − 1 (perfect misclassification) to 1 (perfect classification)46,47. The MCC is 
defined as

The MCC is a reliable statistical measure, and it has a high score only if the prediction obtained good results in 
all of the four confusion matrix categories (high values of TP and TN, and low values of FN and FP)48. The Other 
performance metrics were also calculated and compared: sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV).

Feature selections. For a study with a total of F features, the total number of all possible feature combinations is 
2F . It increases exponentially as F goes up. For a study with 20 features, the number of all possible combinations 
is over 1 million. It is not computationally feasible to search over all possible combinations to identify the opti-
mal feature set for each ML method. To reduce the computational intensity, we propose using a stochastic order-
ing approach in conjunction with the forward model selection  approach49. The stochastic ordering approach is 

Accuracy =
TP + TN

TP + TN + FP + FN
,

MCC =
TP × TN − FP × FN

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

.
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traditionally used in exact statistical inference to order the sample space which is sorted by a test statistic includ-
ing point estimates and confidence  limits11,47,49,50.

We used the forward model selection approach with the Akaike Information Criterion (AIC) as the criteria to 
determine the ordering of these features. The first step is to fit F models with one of the F features in each model. 
The model with the smallest AIC is selected and its associated feature is assigned as the feature in the first place, 
denoted as X(1) . In the second step, we fit F − 1 models with one of the remaining features after the first step, 
and X(1) in the model. The second feature is the one from the model with the smallest AIC among these F − 1 
models. Suppose the second feature is X(2) . Following this procedure, the following ordered F − 2 features are 
determined: X(3), . . . ,X(F) . In this article, a multiple logistic regression model is the statistical model used to 
determine the feature ordering.

Instead of 2F feature combinations, we used the F combinations: Zi = {X(1), . . . ,X(i)} , where i = 1, 2, . . . , and 
F. The new stochastic ordering provides an efficient way to determine the importance of these features to predict 
amyloid positivity, and it provides an efficient route to search for the optimal set of features.

Results
We built ML models for female and male within each diagnosis group, with a total of 6 subgroups: SMC female, 
SMC male, EMCI female, EMCI male, LMCI female, and LMCI male. Table 2 presents the demographics and 
clinical characteristics of these 6 subgroups. The rate of amyloid positivity in female was close to that in men in 
the EMCI group and the LMCI group, while female had a much higher rate than male in the SMC group. Male 
were generally older and tended to have a higher level of education than female in each group. The ADAS-Cog-13 
appeared to increase as disease was progressed, and females had better performances than men in general. We 
also present the pvalue in comparing the three groups (SMC, EMCI, and LMCI) for each characteristic. The fol-
lowing characteristics are not significant in comparing the three groups: hispanic ethnicity, race, marital status, 
family history of dementia, and history of hypertension. The remaining demographics and clinical characteristics 
show statistical differences between the three groups.

For ML models using total scores, the 13 features in Table 2 were all included in the model. For ML models 
using domain scores, the 7 domain scores from MoCA and the 13 domain scores from the ADAS-cog-13 were 
included as features in addition to the 13 features in ML models using total scores. For a categorical feature (e.g., 
Hispanic ethnicity), it is possible that almost all the participants belong to one category which could cause the 
failure of the ML model building. If that dominate category (e.g., non-Hispanic) had the participants more than 
the sample size in that subgroup minus 5, that feature was removed from the features in building ML models 
for that subgroup.

We utilized the proposed stochastic ordering method for the feature importance ordering in each subgroup. 
It should be noted that the ordering of features in each subgroup could be different because the importance 
of features in predicting amyloid positivity varies in each subgroup. Figure 1 shows the accuracy of each ML 
method using domain scores, as a function of the numbers of features in each subgroup. The accuracy lines are 
quite smooth under the new stochastic ordering feature selection method. It can be seen that accuracy for male 
is much higher that that for female within SMC or EMCI, while it is reversed in LMCI with a higher accuracy for 
female. The highest accuracy is often achieved with less than half of the features, except the case for SMC male.

We presented the optimal ML method using domain scores and the associated number of features for each 
subgroup in Table 3. It should be noted that the stochastic ordering of features in each subgroup is often different 
from each other. The optimal numbers of features are often small, except the case for the SMC male group. The 
SVM methods were the best in half of the cases: the SVM with polynominal kernel (svmPoly) for both subgroups 
in the LMCI, and the SVM with radial kernel (svmRadial) for EMCI male. The other 3 optimal methods were: 
a generalized linear model (glm), a boosted Logistic Regression (LogitBoost), and a boosted classification trees 
method (ada).

We compared accuracy of optimal ML models using domain scores and total scores in Table 4. The ML models 
using domain scores had substantial accuracy gain as compared to those based on total scores in the following 
three subgroups: LMCI female (3.4% increase), LMCI male (3.1% increase), and SMC male (4%). In the EMCI 
groups, the optimal ML models using domain scores were similar to those using total scores. In addition to 
accuracy, we presented the other five ML model performance matrix (MCC, sen, spe, PPV, and NPV) in Table 4 
for the identified optimal ML models. When the overall accuracy was similar between female and male (e.g, the 
EMCI group), all other model performance matrix were similar as well. When the accuracy of the optimal ML 
models using domain scores was higher, the MCC was higher and other performance measures (sen, spe, PPV, 
NPV) were better balanced (e.g., sen and spe were close to each other).

Discussion
Deposition of A β is an early recognized marker of AD, detectable as much as a decade prior to symptom onset. 
A popular therapeutic strategy focuses on amyloid removal, which if implemented preclinically, could poten-
tially change the trajectory of the disease course. Current means of amyloid recognition are either invasive or 
expensive. Thus, methods that could predict at an individual level who may be most likely to have elevated brain 
amyloid using easily obtainable clinical data has the potential to reduce costs and speed enrollment in clinical 
trials of AD disease modifying  agents51,52.

This study assessed whether incorporation of domain level scoring from cognitive screening tests into a multi-
variable ML model could improve diagnostic classification of individuals with early stage AD above total scores. 
Screening tests have been shown to insensitive to the earliest cognitive changes in AD and we hypothesized that 
building a model that could presumably integrate a more granular picture of an individual’s cognition (such as 
isolated weaknesses in verbal memory) would significantly improve model accuracy over total  scores53,54. As 
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hypothesized, in most of the subgroups analyzed, incorporation of domain level performance but this was neither 
robust nor true for each subgroup. In particular, we found no benefit of incorporating domain level performance 
in the women groups in the two earliest stages of AD (SMC and EMCI). This is not entirely unexpected given 
that women have known advantages over men in verbal  memory19 and the screening tests sampled—MoCA 
and ADAS-Cog—rely heavily on verbal memory tasks. The model’s discriminative accuracy lagged significantly 
behind that for men in the earliest stages of disease followed by a significant improvement in those women who 
had been diagnosed with LMCI. Women have been shown to decline more rapidly than men in AD and the 

Table 1.  The 15 ML models from the R package caret.

Model ID ML model Method value in R

1 Linear discriminant analysis lda

2 Factor-based linear discriminant analysis RFlda

3 Generalized linear model glm

4 Random forest ranger

5 Recursive partitioning and regression trees rpart

6 k-nearest neighbors knn

7 Support vector machines with radial basis function kernel svmRadial

8 Support vector machines with linear kernel svmLinear

9 Support vector machines with polynomial kernel svmPoly

10 Random forest rf

11 Stochastic gradient boosting gbm

12 Boosted logistic regression LogitBoost

13 tree models or rule-based models C5.0

14 Bagged CART treebag

15 Boosted classification trees ada

Table 2.  Characteristics of the 6 subgroups from the ADNI. The pvalues in the last column are for the 
difference between the three groups (SMC, EMCI, and LMCI).

SMC EMCI LMCI

pvalueF M pvalue F M pvalue F M pvalue

N 100 70 141 176 102 134

Amyloid (%) 41 (41.0) 19 (27.1) 0.063 65 (46.1) 89 (50.6) 0.429 69 (67.6) 87 (64.9) 0.662 < 0.0001

Age 70.9 (5.9) 73.4 (6.1) 0.010 70.6 (7.8) 72.4 (7.0) 0.035 72.6 (8.5) 75.7 (8.3) 0.005 < 0.0001

Edu 16.5 (2.7) 17.3 (2.2) 0.044 15.6 (2.7) 16.5 (2.6) 0.003 15.7 (2.6) 16.5 (2.8) 0.015 0.0075

Hisp (%) 5 (5.0) 1 (1.4) 0.214 8 (5.7) 7(4.0) 0.480 4 (3.9) 1 (0.7) 0.093 0.3653

Race 0.279 0.607 0.035 0.0662

Whites 87 (87.0) 66 (94.3) 129 (91.5) 166 (94.3) 93 (91.2) 131 (97.8)

African American 8 (8.0) 2 (2.9) 4 (2.8) 3 (1.7) 7 (6.9) 1 (0.7)

Other 5 (5.0) 2 (2.9) 8 (5.7) 7 (4.0) 2 (2.0) 2 (1.5)

Marry status 0.079 < 0.01 < 0.01 0.5913

Married 67 (67.0) 56 (80.0) 89 (63.1) 156 (88.6) 59 (57.8) 116 (86.6)

Never married 9 (9.0) 2 (2.9) 9 (6.4) 5 (2.8) 4 (3.9) 1 (0.7)

Divorced 9 (9.0) 8 (11.4) 25 (17.7) 11 (6.2) 14 (13.7) 9 (6.7)

Widowed 15 (15.0) 4 (5.7) 18 (12.8) 4 (2.3) 25 (24.5) 8 (6.0)

APOE ε4 0.176 0.122 0.485 0.0001

0 copy 59 (59.0) 50 (71.4) 89 (63.1) 91 (51.7) 45 (44.1) 69 (51.5)

1 copy 36 (36.0) 19 (27.1) 43 (30.5) 69 (39.2) 44 (43.1) 48 (35.8)

2 copies 5 (5.0) 1 (1.4) 9 (6.4) 16 (9.1) 13 (12.7) 17 (12.7)

ADAS-13 9.4 (4.3) 11.7 (4.5) 0.001 12.2 (5.7) 13.5 (5.4) 0.045 18.0 (8.2) 18.6 (7.0) 0.573 < 0.0001

MoCA 26.2 (2.6) 25.2 (2.7) 0.017 24.1 (3.1) 23.7 (2.9) 0.252 22.0 (3.8) 22.3 (3.1) 0.659 < 0.0001

CDRSB 0.1 (0.4) 0.1 (0.3) 0.193 1.2 (0.8) 1.3 (0.8) 0.180 1.7 (1.0) 1.7 (1.2) 0.931 < 0.0001

MMSE 29.1 (1.2) 29.0 (1.2) 0.884 28.4 (1.7) 28.2 (1.6) 0.162 27.4 (2.0) 27.5 (1.8) 0.816 < 0.0001

Family hist (%) 67 (67.0) 42 (60.0) 0.349 95 (67.4) 109 (61.9) 0.315 62 (60.8) 75 (56.0) 0.458 0.1776

Hypertension (%) 41 (41.0) 33 (47.1) 0.427 64 (45.4) 97 (55.1) 0.085 43 (42.2) 66 (49.3) 0.279 0.7189

GDS 1.0 (1.0) 0.9 (0.9) 0.625 2.0 (1.6) 1.6 (1.5) 0.019 2.2 (1.9) 1.8 (1.6) 0.137 < 0.0001
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improved accuracy of the model to classify women in LMCI as opposed to SMC or EMCI may reflect the accel-
erated failure of memory networks that may occur later in women compared to  men55. The low discriminative 
accuracy of the model in SMC (68.8) and EMCI women (71.3), even with the incorporation of APOE ε4 status 
indicates that it is challenging to accurately predict amyloid status in women in early stages of AD.
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Figure 1.  Accuracy of the 15 ML methods using the domain scores for the 6 subgroups stratified by diagnosis 
and sex.

Table 3.  The optimal ML model for each subgroup.

Diagnosis Sex Optimal ML method Num Features

LMCI F SVM with polynomial kernel 7 APOE ε4 , ADAS total, ADAS-Q2, 4, 9, 12, Family Hist, GDS

LMCI M SVM with polynomial kernel 3 APOE ε4 , ADAS total, ADAS-Q2,

EMCI F Generalized linear model 2 Age, APOE ε4

EMCI M SVM with radial kernel 6 Age, APOE ε4 , marry status, ADAS-Q4, Q5, Q6

SMC F Boosted logistic regression 4 APOE ε4 , MoCA total, ADAS-Q8, ADAS-Q11

SMC M Boosted classification trees 27 All features
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A novel feature of our approach is the development of a new feature selection method based on the stochastic 
ordering of features within each  subgroup45,56. This new feature selection method reduced the computational 
intensity from exponential to linear, making the search for the optimal set of features computationally feasible. 
The proposed stochastic ordering seemed to work very well in general. The presence of the APOE ε4 allele is 
highly correlated with amyloid positivity and we saw that this was the optimal feature seen in each diagnostic 
group. It was notable that performance on the delayed memory of the MoCA did not contribute significantly 
to the model’s ability to predict underlying amyloid status. It is likely that having only 5-items in the delayed 
memory task is neither sensitive nor specific for predicting amyloid accumulation in early stage AD.

One of the limitations of this study is that the samples utilized in this study are not demographically repre-
sentative of the general population and thus not fully representative of populations who would participate in 
community screenings. In addition, it would be unlikely to know the APOE ε4 status of individuals participating 
in screening events. Diagnostic confirmation of AD is completed with expensive (amyloid PET) and invasive 
(CSF for amyloid beta) confirmatory studies and there are limited datasets that would allow us to confirm AD 
in large enough datasets to confirm diagnostic status. Future work should focus on developing ML algorithms 
using data collected from community samples to test whether these strategies are adequate to meet the challenge 
of the affordable and accurate diagnosis of individuals with early stage AD. In addition, the sample sizes in each 
subgroup are not large enough to conduct a three-fold separation into  training30,33, testing, and validation data 
sets, as suggested by one of the reviewers. We consider this is an attractive approach to overcome the challenge 
of identifying an independent data set from another study as the validation data. Due to the lack of a validation 
data set, the presented performance matrix may be lower as the variations of data sets.

Current approaches to early identification of AD still rely on cost prohibitive, labor-intensive, and expensive 
diagnostic  tests57. These diagnostic tests are typically only available in a limited number of tertiary care  centers58. 
Furthermore, many psychometric tests used to support a diagnosis are available in only a limited number of 
languages and may not have options for hearing or visually impaired  individuals59. This often means an AD 
diagnosis can be missed or delayed for  years60. The impact is even more dramatic on the AD drug development 
pipeline which has seen significant bottlenecks in recruitment for early stage trials and studies composed of 
largely homogeneous  populations61,62.

We proposed a new feature selection method based on the stochastic ordering of features within each sub-
group. This new feature selection method reduces the computational intensity from exponential to linear, which 
makes the search for the optimal set of features computationally  feasible10,56,63,64. The proposed stochastic ordering 
works very well in general. We did notice the issue of the optimal ML model for the SMC male group where the 
optimal model was achieved when all the features were included in the model. This was partially caused by the 
method to determine the feature ordering. For simplicity, the binary logistic regression with the AIC criteria 
was used for the stochastic ordering. For that subgroup (the SMC male), the final optimal ML method is a tree 
based method which could be very different from a logistic regression. We would consider this as future work 
to identity simple statistical models for feature ordering for each ML method.

Patients could be pre-screened with these tools and those that are most likely to have brain amyloid would 
undergo confirmatory testing with PET amyloid imaging or CSF studies. In conjunction with identifying those at 
a high risk of amyloid/tau pathology, we hypothesize that ML approaches will be able to estimate the likelihood 
of disease progression over a defined period. Enrolling patients with a high likelihood of progression will help 
reduce the chance of a failed trial due to lack of decline in the placebo group. AD and other neurodegenerative 
disorders cause characteristic patterns of cognitive decline that can be captured by neuropsychological assess-
ments (e.g., the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) or a Neuropsychologi-
cal Test battery (NTB)). Using novel ML methods based on newly discovered risk factors and biomarkers (e.g., 
stroke, diabetes, and basal forebrain  volume65,66) for cognitive decline, our research will increase the understand-
ing of how newly discovered risk factors and biomarkers contribute to prediction of AD biomarkers.

As predicted, the present study showed that for women with no measurable memory deficits, only three 
cognitive test features, only one related to memory, were included in the optimal model for predicting presence 
of brain beta amyloid in women with SMC. In contrast, the model for SMC men included all input features. For 

Table 4.  Comparing ML models using domain scores or total scores based on 1000 simulations.

Diagnosis Sex Scores Accuracy (%) MCC Sen (%) Spe (%) PPV (%) NPV (%)

LMCI
F

Domain scores 86.1 0.694 88.8 80.4 91.2 78.8

LMCI Total scores 82.7 0.668 78.6 91.7 95.6 67.9

LMCI
M

Domain scores 78.1 0.534 80.9 72.7 85.2 68.0

LMCI Total scores 75.0 0.424 88.2 50.0 76.8 70.2

EMCI
F

Domain scores 71.2 0.428 66.3 75.5 71.0 72.8

EMCI Total scores 71.3 0.430 66.7 75.3 70.9 73.1

EMCI
M

Domain scores 78.4 0.578 73.0 83.8 82.7 76.1

EMCI Total scores 77.2 0.551 74.8 79.6 79.2 76.5

SMC
F

Domain scores 67.0 0.326 56.5 74.6 63.7 70.9

SMC Total scores 68.8 0.364 58.4 76.3 66.2 72.2

SMC
M

Domain scores 90.4 0.726 66.7 97.5 91.7 90.7

SMC Total scores 86.4 0.596 59.8 94.4 78.2 89.1
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women with EMCI, no cognitive tests were included as input features in the optimal model, with only age and 
APOE ε4 status as most useful in prediction of brain amyloid beta. The model for EMCI men featured only three 
cognitive test features, including delayed recall memory and object naming, deficits in which are typically thought 
of as hallmarks of early AD. This pattern again suggests that cognitive assessments may not predict presence of 
AD pathology in women as effectively as they do in men at early disease stages. In contrast, at the LMCI stage, 
a broader range of cognitive test scores were included as features in optimal model for women than the one for 
men. Recall and recognition memory scores were among those included. This finding is consistent with studies 
showing that women with brain beta amyloid decline cognitively more quickly than men—therefore, cognitive 
test scores would be expected to better differentiate amyloid positive vs. negative women than men.

The current approach differs from many machine learning analyses, which attempt to predict future cognitive 
decline using current biomarker  status67–69. Our analysis adds uniquely to the literature by showing that current 
cognitive status can accurately predict current amyloid status, particularly in men with SMC. This knowledge 
could be applied to improve the odds that clinical trials and research studies without access to amyloid PET 
imaging are including amyloid positive SMC men in their cohorts (i.e., those with preclinical AD), and excluding 
those with non-AD SMC. This would increase the power of such studies to find results relevant to early disease 
process in preclinical AD men. Unfortunately, our finding is also consistent with our and others’ prior work 
showing cognitive tests may not be sufficient to identify women with preclinical  AD27,70. Practically, this means 
that without biomarker confirmation or more comprehensive cognitive assessment, women included in SMC 
groups in clinical trials and research may be more heterogeneous than SMC men. Such heterogeneity could lead 
to lack of effects or could underlie some findings of sex differences in Alzheimer’s disease.

Data availability
Data used in preparation of this article were obtained from the Alzheimer’s disease Neuroimaging Initiative 
(ADNI) database (http://adni.loni.usc.edu). Thus, the investigators within the ADNI contributed to the design 
and implementation of ADNI and/or provided data, but did not participate in this analysis or the writing of this 
report. A complete listing of ADNI investigators can be found at its website.
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